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Abstract
In this paper, we will show that a vanishing generalized concurrence of a
separable state can be seen as an algebraic variety called the Segre variety.
This variety defines a quadric space which gives a geometric picture of
separable states. For pure, bi- and three-partite states the variety equals the
generalized concurrence. Moreover, we generalize the Segre variety to a
general multipartite state by relating to a quadric space defined by two-by-two
subdeterminants.

PACS numbers: 03.67.Mn, 42.50.Dv, 42.50.Hz, 42.65.Ky

1. Introduction

The most interesting feature of quantum mechanical systems, namely, quantum entanglement,
was defined by Schrödinger [1] and Einstein, Podolsky and Rosen [2]. Many years have
passed since the dawn of quantum mechanics, but we have still not been able to solve the
enigma of entanglement, e.g., finding a complete mathematical model to describe, quantify,
and at the same time reveal the physical implications of this feature. Moreover, we know very
little about the geometry of entanglement. In quantum mechanics, the space of a pure state
can be described by the N-dimensional complex projective space CPN . The question now is,
how can we define quantum entanglement of a general pure state on such complex projective
space?

There are several different answers to this question. One of the earliest proposals
was to quantify the entanglement in terms of a distance to the nearest separable state [3].
Another idea is to use the maximum violation of generalized Bell inequalities as a measure of
entanglement [4]. Such Bell inequality functions are called entanglement witnesses, and have
mostly been used to detect nonseparable states [5–7]. However, in a recent paper, Bertlmann,
Narnhofer and Thirring have combined the two ideas and shown that the maximal violation of
a generalized Bell inequalities and the Hilbert–Schmidt distance to the convex set of separable
states are equivalent [8]. Hence, they demonstrate that both these concepts have a geometric
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interpretation. Yet another idea to quantify entanglement is to use the entropy of the reduced
density matrix as a measure of entanglement, the so-called entanglement of formation [9]. If
the entropy of the remaining subsystem is the same as that for the original system, there is
no entanglement between the remaining subsystem and the subsystem being traced out. For
bipartite, pure states, the entanglement of formation is simply a entropic function of the state’s
so-called concurrence [10]. In this paper, we shall demonstrate that concurrence, just like
entanglement witnesses, has a geometric interpretation. The connection between concurrence
and geometry is found in a map called a Segre embedding, see Brody and Hughston [11].
They illustrate this map for a pair of qubits, and point out that this map characterizes the idea
of quantum entanglement. Moreover, they define a variety that represents the set of separable
states but they do not discuss it much further. Segre embedding has also been discussed
by Miyake [12] in the context of classification of multipartite states in entanglement classes
(where two states belong to the same class if they are interconvertible under stochastic local
operations and classical communication).

In this paper, we will expand this idea and describe the Segre variety, which is a quadric
space in algebraic geometry, by giving a complete and explicit formula for it. Moreover, we
will compare the Segre variety with the concurrence of a general pure, bipartite state [13–17].
Vanishing of the concurrence of a separable state coincides with the Segre variety. This will
illustrate the geometry of concurrence as a measure of bipartite entanglement in a complete
and satisfactory way. Furthermore, we generalize Segre variety to a general multipartite state
by relating the decomposable tensors to a quadric space defined by two-by-two prime ideals.
In this paper, we assume that the reader is familiar with basic concepts in abstract algebra such
as ring theory and fields.

2. Quantum entanglement

In this section, we will define separable states and entangled states. Let us denote a
general, pure, composite quantum system with m subsystems, Q = Qp

m(N1, N2, . . . , Nm) =
Q1Q2 · · ·Qm, consisting of a state

|�〉 =
N1∑

i1=1

N2∑
i2=1

· · ·
Nm∑

im=1

αi1,i2,...,im |i1, i2, . . . , im〉 (1)

defined on a Hilbert space

HQ = HQ1 ⊗ HQ2 ⊗ · · · ⊗ HQm
= CN1 ⊗ CN2 ⊗ · · · ⊗ CNm, (2)

where the dimension of the j th Hilbert space is given by Nj = dim
(
HQj

)
. We are going to

use this notation throughout this paper, i.e., we denote a pure pair of qubits by Qp

2 (2, 2). Next,
let ρQ denote a density operator acting on HQ. The density operator ρQ is said to be fully
separable, which we will denote by ρ

sep
Q , with respect to the Hilbert space decomposition, if it

can be written as

ρ
sep
Q =

N∑
k=1

pk

m⊗
j=1

ρk
Qj

,

N∑
k=1

pk = 1 (3)

for some positive integer N, where pk are positive real numbers and ρk
Qj

denote a density

operator on Hilbert space HQj
. If ρ

p

Q represents a pure state, then the quantum system is fully
separable if ρ

p

Q can be written as ρ
sep
Q = ⊗m

j=1 ρQj
, where ρQj

is a density operator on HQj
.

If a state is not separable, then it is called an entangled state. Some of the generic entangled
states are called Bell states and EPR states.
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3. Segre variety

This section serves as an introduction to the affine space, Segre embedding and the Segre
variety in such a way that it enables us to establish a relation between concurrence and Segre
variety in the following sections. The general references for this section are [18–22]. Let C
be a field of complex numbers and N be an integer. Then, we define an N-dimensional affine
space over C, denoted by AN

C or AN , to be the set of all N-tuples of elements of C, i.e.,

AN = {P = (a1, a2, . . . , aN) : a1, a2, . . . , aN ∈ C}. (4)

An element P = (a1, a2, . . . , aN) is called a point, where ai ∈ C is called a coordinate of P.
In general, we call A1 = C the affine line and A2 the affine plane.

Let R(N) = C[Z1, Z1, . . . , ZN ] be the polynomial ring over C in the N variables
Z1, Z1, . . . , ZN . Any element F ∈ R(N) gives rise to a C-valued map on AN by evaluation,
i.e., P = (a1, a2, . . . , aN) �−→ F(a1, a2, . . . , aN) = F(P ). Such a function on AN is called
a polynomial or a regular function. Given F ∈ R(n), the set of points yielding zeros of F is
denoted by V(F ), i.e.,

V(F ) = {P ∈ AN : F(P ) = 0}. (5)

A closed subset of AN which is of the form V(F ), with F ∈ R(N) not a scalar, is called the
hypersurface defined by F or the hypersurface whose equation is F = 0. If F ∈ R(N) is of
degree r � 1, then V(F ) is called a hypersurface of degree r in AN . It is called a hyperplane,
a quadric, a cubic, . . . , for r = 1, 2, 3, . . . . The union of a finite number of hypersurfaces is
again a hypersurface and its degree is the sum of their degrees, i.e.,

V(F1F2 · · · Fd) = V
(

r⋂
i=1

Fi

)
= V(F1) ∪ V(F2) ∪ · · · ∪ V(F1). (6)

A subset I of a commutative ring R is called an ideal of R if it has the following properties:
(i) for any elements α, β ∈ I, we have α + β ∈ I. (ii) For any elements a ∈ R and α ∈ I, we
have aα ∈ I. If two elements a �= 0, b �= 0 of R satisfy ab = 0, then we call a a zero divisor
(and so b). R is called an integral domain if it has no zero divisor and an ideal I of R is called
a prime ideal if R/I is an integral domain. The ideal I(V ) of an algebraic subset V ⊂ AN is
the largest ideal of polynomial functions on AN vanishing on V and the coordinate ring C[V ]
of V is naturally isomorphic to quotient ring R(N)/I(V ). C[V ] is reduced and V is said to
be equipped with the canonical reduced structure. An irreducible algebraic subset V of AN is
called an affine algebraic variety, i.e., if its ideal I(V ) is a prime ideal of R(N) or equivalently,
its coordinate ring C[V ] = R(N)/I(V ) is an integral domain.

Now, let AN1 and AN2 be affine spaces. If X = (x1, x2, . . . , xN1) and Y =(
y1, y2, . . . , yN2

)
are two points defined on AN1 and AN2 , respectively, then the map

φ : AN1 × AN2 −→ AN1+N2

(X, Y ) �−→ (
x1, x2, . . . , xN1 , y1, y2, . . . , yN2

) (7)

is a one-to-one and onto mapping. If V and U are algebraic sets in AN1 and AN2 , respectively,
then φ(V × U) is a algebraic set in AN1+N2 .

If X = (x1, x2, . . . , xN) and Y = (y1, y2, . . . , yN) are two different points in AN , then
the line L passing through X and Y is parametrically defined as

L = {(δx1 + τy1, δx2 + τy2, . . . , δxN + τyN) : δ, τ ∈ C}. (8)

The complex projective space, CPN−1, is defined as the set of all lines through (0, 0, . . . , 0)

in AN . Let X and Y be two points. Then X and Y determines the same line if, and only if, there
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exist a δ ∈ C, δ �= 0, such that yi = δxi , for all i = 1, 2, . . . , N . That is, the lines X and Y are
equivalent, which we denote by X ∼ Y . Now, if we assume that this is the case, then

CPN−1 ∼= AN − {(0, 0, . . . , 0)}
X ∼ δX

. (9)

If a point X ∈ CPN−1 is determined by (x1, x2, . . . , xN) ∈ AN , then we say that (x1, x2, . . . ,

xN) is a set of homogeneous coordinates for X. If xi �= 0, then we have

X =
(

x1

xi

, . . . ,
xi−1

xi

, 1,
xi+1

xi

, . . . ,
xN

xi

)
. (10)

Let R = R(N) = C[Z0, Z1, . . . , ZN ] be the polynomial ring over C in the variables
Z0, Z1, . . . , ZN . Then, for a form F ∈ R, we define V(F ) = {P ∈ CPN−1 : F(P ) = 0},
called the set of projective zeros of F. Unlike in the affine case, we have CPN1−1 × CPN2−1 �=
CPN1+N2−2. For example, in CP1 × CP1, the lines Lx = {x} × CP1 and Ly = {y} × CP1 are
parallel for x �= y in CP1 but there are no parallel lines in CP2 since any two distinct lines
L1 = V(a1X1 + a2X2 + a3X3) and L2 = V(b1X1 + b2X2 + b3X3) intersect at the unique point
(a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

Now, we want to make CPN1−1 ×CPN2−1 into a projective variety by its Segre embedding
which we construct as follows: let X and Y be two points defined on CPN1−1 and CPN2−1,
respectively. Then, the map

SN1,N2 : CPN1−1 × CPN2−1 −→ CPN1N2−1

(X, Y ) �−→ (
x1y1, . . . , x1yN2 , . . . , xN1y1, . . . , xN1yN2

) (11)

is a closed immersion, called the Segre embedding. To see that, let Xi , and Yj be the
homogeneous coordinate functions on CPN1−1 and CPN2−1, respectively. Moreover, let Zi,j

be the homogeneous coordinate function on CPN1N2−1. Now, we arrange the homogeneous
coordinate Zi,j as follows:


Z1,1 Z1,2 · · · Z1,N2

Z2,1 Z2,2 · · · Z2,N2

...
...

. . .
...

ZN1,1 ZN1,2 · · · ZN1,N2


 . (12)

The map SN1,N2 = (. . . , XiYj , . . .) is a morphism since it is defined by polynomials on any
affine piece Ui × Uj where

CPN1−1 =
N1−1⋃
i=1

Ui and CPN2−1 =
N2−1⋃
j=1

Uj (13)

are the standard affine coverings. But the determinant

det

(
XiYk XiYl

XjYk XjYl

)
(14)

vanishes for all i, j and k, l, so the image of SN1,N2 is contained in the closed subset

T =




(. . . , zi,j , . . .) ∈ CPN1N2−1 : rk




z1,1 z1,2 · · · z1,N2

z2,1 z2,2 · · · z2,N2

...
...

. . .
...

zN1,1 zN1,2 · · · zN1,N2


 = 1




,

where rk denotes the matrix rank. If Im denotes the image, then T = Im
(
SN1,N2

)
and SN1,N2

is an isomorphism. To see that, let us consider t = (. . . , zi,j , . . .) ∈ Z. Then all the rows
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and columns of the rank one matrix (zi,j ) are proportional. For any columns x �= 0 and any
rows y �= 0 of this matrix we have t = SN1,N2(x, y) and T = Im

(
SN1,N2

)
. Moreover, the

map t �−→ (x, y) is the inverse to SN1,N2 and so it is an isomorphism. If V ⊆ CPN1−1 and
W ⊆ CPN2−1 are projective algebraic sets, then V ×W is projective and is closed in the closed
subvariety CPN1−1 × CPN2−1 = Im

(
SN1,N2

) ⊂ CPN1N2−1. The image of the Segre embedding
is an intersection of a family of quadric hypersurfaces in CPN1N2−1, that is

Im
(
SN1,N2

) =
⋂

i,j,k,l

V(Zi,kZj,l − Zi,lZj,k). (15)

i.e., Im(S2,2) = V(Z1,1Z2,2 − Z1,2Z2,1) is a quadric surface in CP3.

3.1. Segre variety for a general bipartite state and concurrence

For given quantum system Q2(N1, N2) we want make CPN1−1 × CPN2−1 into a projective
variety by its Segre embedding which we construct as follows. Let

(
α1, α2, . . . , αN1

)
and(

α1, α2, . . . , αN2

)
be two points defined on CPN1−1 and CPN2−1, respectively, then the Segre

map

SN1,N2 : CPN1−1 × CPN2−1 −→ CPN1N2−1 (16)

((
α1, α2, . . . , αN1

)
,
(
α1, α2, . . . , αN2

)) �−→ (
α1,1, α1,2, . . . , α1,N1 , . . . , αN1,1, . . . , αN1,N2

)
(17)

is well defined. Next, let αi,j be the homogeneous coordinate function on CPN1N2−1. Then
the image of the Segre embedding is an intersection of a family of quadric hypersurfaces in
CPN1N2−1, that is

Im
(
SN1,N2

) =
⋂

i,j,k,l

V(Ci,j ;k,l(N1, N2)) =
⋂

i,j,k,l

V(αi,kαj,l − αi,lαj,k). (18)

This quadric space is the space of separable states and it coincides with the definition of
general concurrence C(Q2(N1, N2)) of a pure bipartite state [13, 14] because

C(Q2(N1, N2)) =

N N1∑

j,i=1

N2∑
l,k=1

|Ci,j ;k,l(N1, N2)|2



1
2

=

N N1∑

j,i=1

N2∑
l,k=1

|αi,kαj,l − αi,lαj,k|2



1
2

, (19)

where N is a somewhat arbitrary normalization constant. The separable set is defined by
αi,kαj,l = αilαjk for all i, j and k, l, i.e.,

Im(S2,2) = V(α1,1α2,2 − α1,2α2,1) ⇐⇒ α1,1α2,2 = α1,2α2,1 (20)

is a quadric surface in CP3 which coincides with the space of separable set of pairs of qubits.

4. Multi-projective variety and multi-partite entanglement measure

In this section, we will generalize the Segre variety to a multi-projective space. As in the
previous section, we can make CPN1−1 × CPN2−1 × · · · × CPNm−1 into a projective variety
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by its Segre embedding following almost the same procedure. Let
(
α1, α2, . . . , αNi

)
be points

defined on CPNi−1. Then the Segre map

SN1,...,Nm
: CPN1−1 × CPN2−1 × · · · × CPNm−1 −→ CPN1N2···Nm−1((

α1, α2, . . . , αN1

)
, . . . ,

(
α1, α2, . . . , αNm

)) �−→ (
. . . , αi1,i2,...,im , . . .

) (21)

is well defined for αi1i2···im , 1 � i1 � N1, 1 � i2 � N2, . . . , 1 � im � Nm as a homogeneous
coordinate function on CPN1N2···Nm−1. Now, let us consider the composite quantum system
Qp

m(N1, N2, . . . , Nm) and let the coefficients of |�〉, namely αi1,i2,...,im , make an array as
follows:

A = (
αi1,i2,...,im

)
1�ij �Nj

, (22)

for all j = 1, 2, . . . , m. A can be realized as the following set {(i1, i2, . . . , im) : 1 � ij �
Nj,∀j}, in which each point (i1, i2, . . . , im) is assigned the value αi1,i2,...,im . Then A and its
realization is called an m-dimensional box-shape matrix of size N1 × N2 × · · · × Nm, where
we associate with each such matrix a sub-ring SA = C[A] ⊂ S, where S is a commutative ring
over the complex number field. For each j = 1, 2, . . . , m, a two-by-two minor about the j th
coordinate of A is given by

Ck1,l1;k2,l2;...;km,lm = αk1,k2,...,km
αl1,l2,...,lm − αk1,k2,...,kj−1,lj ,kj+1,...,km

αl1,l2,...,lj−1,kj ,lj+1,...,lm ∈ SA.

(23)

Then the ideal Im
A of SA is generated by Ck1,l1;k2,l2;...;km,lm and describes the separable states

in CPN1N2···Nm−1 [23]. The image of the Segre embedding Im
(
SN1,N2,...,Nm

)
which again is an

intersection of families of quadric hypersurfaces in CPN1N2···Nm−1 is given by

Im
(
SN1,N2,...,Nm

) =
⋂
∀j

Im
A =

⋂
∀j

V
(
Ck1,l1;k2,l2;...;km,lm

)
. (24)

Moreover, following the same argumentation as in the bipartite case, we can define an
entanglement measure for a pure multipartite state as

E
(
Qp

m(N1, . . . , Nm)
) =


N

∑
∀j

∣∣Ck1,l1;k2,l2;...;km,lm

∣∣2




1
2

=

N∑

∀j

∣∣αk1,k2,...,km
αl1,l2,...,lm − αk1,k2,...,kj−1,lj ,kj+1,...,km

αl1,l2,...,lj−1,kj ,lj+1,...,lm

∣∣2




1
2

,

(25)

where N is an arbitrary normalization constant and j = 1, 2, . . . , m. This measure coincides
with the concurrence for a general bipartite and three-partite state. However, for reasons
that will be explained below, it fails to quantify the entanglement for m � 4, whereas it still
provides the condition of full separability.

5. Example: three-partite state

As an example, let us look a general three-partite state. The generalized concurrence [13] for
such a state is given by
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E
(
Qp

3 (N1, N2, N3)
) =


N

∑
k1,l1;k2,l2;k3,l3

∑
∀j

∣∣Ck1,l1;k2,l2;k3,l3

∣∣2




1
2

=
(
N

∑
k1,l1;k2,l2;k3,l3

(∣∣αk1,k2,k3αl1,l2,l3 − αk1,k2,l3αl1,l2,k3

∣∣2
+

∣∣αk1,k2,k3αl1,l2,l3

−αk1,l2,k3αl1,k2,l3

∣∣2)
+

∣∣αk1,k2,k3αl1,l2,l3 − αl1,k2,k3αk1,l2,l3

∣∣2

) 1
2

. (26)

This equation for an entanglement measure is equivalent but not equal to our entanglement
tensor based on joint POVMs on phase space [24]. For a three-qubit state Qp

3 (2, 2, 2), we
have

E
(
Qp

3 (2, 2, 2)
) = (4N {2|α1,1,1α2,2,1 − α1,2,1α2,1,1|2 + 2|α1,1,2α2,2,2 − α1,2,2α2,1,2|2
+ 2|α1,1,1α2,1,2 − α1,1,2α2,1,1|2 + 2|α1,2,1α2,2,2 − α1,2,2α2,2,1|2
+ 2|α1,1,1α1,2,2 − α1,1,2α1,2,1|2 + 2|α2,1,1α2,2,2 − α2,1,2α2,2,1|2
+ |α1,1,1α2,2,2 − α1,1,2α2,2,1|2 + |α1,1,1α2,2,2 − α1,2,1α2,1,2|2
+ |α1,1,1α2,2,2 − α1,2,2α2,1,1|2 + |α1,1,2α2,2,1 − α1,2,1α2,1,2|2
+ |α1,1,2α2,2,1 − α1,2,2α2,1,1|2 + |α1,2,1α2,1,2 − α1,2,2α2,1,1|2}) 1

2 . (27)

We can derive this expression in a different way than it was originally derived using the idea
of the Segre ideal. The ideal I2,2,2

Q1|�Q2Q3
representing if a subsystem Q1 that is unentangled with

Q2Q3 is generated by the six two-by-two subdeterminants of(
α1,1,1 α1,1,2 α1,2,1 α1,2,2

α2,1,1 α2,1,2 α2,2,1 α2,2,2

)
(28)

and is given by

I2,2,2
Q1|�Q2Q3

= 〈α1,1,1α2,1,2 − α1,1,2α2,1,1, α1,1,1α2,2,1 − α1,2,1α2,1,1, α1,1,1α2,2,2

−α1,2,2α2,1,1, α1,1,2α2,2,1 − α1,2,1α2,1,2, α1,1,2α2,2,2

−α1,2,2α2,1,2, α1,2,1α2,2,2 − α1,2,2α2,2,1〉,
where we have used the notation |� to indicate that Q1 is separated from Q2Q3 but we still
could have entanglement between Q2 and Q3. The notation {2, 2, 2} is used to indicate a
three-partite state where the dimension of the Hilbert space of each subsystem is 2 (i.e., three
qubits). In the same way, we can define the ideal I2,2,2

Q2|�Q1Q3
representing if the subsystem Q2

is unentangled with Q1Q3 and IQ3|�Q1Q2 representing if the subsystem Q3 is unentangled with
Q2Q3. The ideals are generated by the six two-by-two subdeterminants of(

α1,1,1 α1,1,2 α2,1,1 α2,1,2

α1,2,1 α1,2,2 α2,2,1 α2,2,2

)
and

(
α1,1,1 α1,2,1 α2,1,1 α2,2,1

α1,1,2 α1,2,2 α2,1,2 α2,2,2

)
, (29)

respectively. Written out explicitly they are

I2,2,2
Q2|�Q1Q3

= 〈α1,1,1α1,2,2 − α1,1,2α1,2,1, α1,1,1α2,2,1 − α2,1,1α1,2,1, α1,1,1α2,2,2

−α2,1,2α1,2,1, α1,1,2α2,2,1 − α2,1,1α1,2,2, α1,1,2α2,2,2

−α1,2,2α2,1,2, α2,1,1α2,2,2 − α2,1,2α2,2,1〉,
and

I2,2,2
Q3|�Q1Q2

= 〈α1,1,1α1,2,2 − α1,2,1α1,1,2, α1,1,1α2,1,2 − α2,1,1α1,1,2, α1,1,1α2,2,2

−α2,2,1α1,1,2, α1,2,1α2,1,2 − α2,1,1α1,2,2, α1,2,1α2,2,2

−α2,2,1α1,2,2, α2,1,1α2,2,2 − α2,2,1α2,1,2〉.
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Hence, the Segre ideal of a completely separable pure three-qubit state is given by

I2,2,2
Segre = I2,2,2

{Q1|�Q2Q3,Q2|�Q1Q3,Q3|�Q1Q2}

= I2,2,2
Q1|�Q2Q3

⋂
I2,2,2
Q2|�Q1Q3

⋂
I2,2,2
Q2|�Q1Q2

= 〈α1,1,1α2,1,2 − α1,1,2α2,1,1, α1,1,1α2,2,1 − α1,2,1α2,1,1, α1,1,1α2,2,2

− α1,2,2α2,1,1, α1,1,2α2,2,1 − α1,2,1α2,1,2, α1,1,2α2,2,2 − α1,2,2α2,1,2, α1,2,1α2,2,2

− α1,2,2α2,2,1, α1,1,1α1,2,2 − α1,1,2α1,2,1, α1,1,1α2,2,2 − α1,2,1α2,1,2, α1,1,2α2,2,1

− α1,2,2α2,1,1, , α2,1,1α2,2,2 − α2,1,2α2,2,1, α1,1,1α2,2,2 − α1,1,2α2,2,1, α1,2,1α2,1,2

− α1,2,2α2,1,1〉. (30)

This equation coincide with equation (24) for a three-qubit state. For a general multipartite
state, that is, for m � 4 this measure E

(
Qp

m(N1, . . . , Nm)
)

is not invariant under local
operations. To show why this measure is not invariant under local operations, let us consider
the quantum system Qp

4 (2, 2, 2, 2). In this case, we can have seven types of separability
between different subsystems as follows: it maybe possible to factor Q1, Q2, Q3, or Q4 from
the composite system. To check this we need to make four different permutations of indices
and this is exactly what the measure E

(
Qp

4 (2, 2, 2, 2)
)

does. But there are other types of
separability in this four-qubit state, namely if it is possible to factor out Q1Q2, Q1Q3, Q1Q4,
Q2Q3, Q2Q4 or Q3Q4. These six possible factorizations can be reduced to three checks of
separability since if we test for separability of, i.e., Q1Q2, we have simultaneously tested
Q3Q4. For these types of separability, we do need to perform more than one simultaneous
permutation of indices. The measure (25) does not check this type of separability which is
needed in the general case [25].

6. Conclusion

In this paper, we have discussed a geometric picture of the separable set of states for a
general pure bipartite state based on algebraic complex projective geometry. In particular,
we have proved that complete separability for a general pure bipartite state can be seen as a
Segre variety. Moreover, we have generalized this result to multipartite states, by defining
a map called multi-projective Segre embedding. The image of this map defines a quadric
space, namely the generalized Segre variety which we constructed by a prime ideal of two-by-
two subdeterminants of a so-called decomposable tensor. We showed that the Segre variety
define the completely separable states of a general multipartite state. Furthermore, based
on this subdeterminant, we define an entanglement measure for general pure bipartite and
three-partite states which coincide with generalized concurrence.
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